Pengertian Sensor

Rabu, Maret 03, 2010

Sensor adalah alat untuk mendeteksi/mengukur sesuatu, yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. Dalam lingkungan sistem pengendali dan robotika, sensor memberikan kesamaan yang menyerupai mata, pendengaran, hidung, lidah yang kemudian akan diolah oleh kontroler sebagai otaknya (Petruzella, 2001).

Sensor dalam teknik pengukuran dan pengaturan secara elektronik berfungsi mengubah besaran fisik (misalnya : temperatur, gaya, kecepatan putaran) menjadi besaran listrik yang proposional. Sensor dalam teknik pengukuran dan pengaturan ini harus memenuhi persyaratan-persyaratan kualitas yakni :

1. Linieritas
Konversi harus benar-benar proposional, jadi karakteristik konversi harus linier.

2. Tidak tergantung temperatur
Keluaran konverter tidak boleh tergantung pada temperatur di sekelilingnya, kecuali sensor suhu.

3. Kepekaan
Kepekaan sensor harus dipilih sedemikian, sehingga pada nilai-nilai masukan yang ada dapat diperoleh tegangan listrik keluaran yang cukup besar.

4. Waktu tanggapan
Waktu tanggapan adalah waktu yang diperlukan keluaran sensor untuk mencapai nilai akhirnya pada nilai masukan yang berubah secara mendadak. Sensor harus dapat berubah cepat bila nilai masukan pada sistem tempat sensor tersebut berubah.

5. Batas frekuensi terendah dan tertinggi
Batas-batas tersebut adalah nilai frekuensi masukan periodik terendah dan tertinggi yang masih dapat dikonversi oleh sensor secara benar. Pada kebanyakan aplikasi disyaratkan bahwa frekuensi terendah adalah 0Hz.

6. Stabilitas waktu
Untuk nilai masukan (input) tertentu sensor harus dapat memberikan keluaran (output) yang tetap nilainya dalam waktu yang lama.

7. Histerisis
Gejala histerisis yang ada pada magnetisasi besi dapat pula dijumpai pada sensor. Misalnya, pada suatu temperatur tertentu sebuah sensor dapat memberikan keluaran yang berlainan.

Empat sifat diantara syarat-syarat dia atas, yaitu linieritas, ketergantungan pada temperatur, stabilitas waktu dan histerisis menentukan ketelitian sensor (Link, 1993).

Sensor Cahaya – LDR (Light Dependent Resistor)

Cds_Photoconductive_Cell_Photoresistor_LDR vdiv1

Resistor peka cahaya (Light Dependent Resistor/LDR) memanfaatkan bahan semikonduktor yang karakteristik listriknya berubah-ubah sesuai dengan cahaya yang diterima. Bahan yang digunakan adalah Kadmium Sulfida (CdS) dan Kadmium Selenida (CdSe). Bahan-bahan ini paling sensitif terhadap cahaya dalam spektrum tampak, dengan puncaknya sekitar 0,6 µm untuk CdS dan 0,75 µm untuk CdSe. Sebuah LDR CdS yang typikal memiliki resistansi sekitar 1 MΩ dalam kondisi gelap gulita dan kurang dari 1 KΩ ketika ditempatkan dibawah sumber cahaya terang (Mike Tooley, 2003).

LDR adalah suatu bentuk komponen yang mempunyai perubahan resistansi yang besarnya tergantung pada cahaya. Karakteristik LDR terdiri dari dua macam yaitu Laju Recovery dan Respon Spektral:

1. Laju Recovery
Bila sebuah LDR dibawa dari suatu ruangan dengan level kekuatan cahaya tertentu kedalam suatu ruangan yang gelap, maka bisa kita amati bahwa nilai resistansi dari LDR tidak akan segera berubah resistansinya pada keadaan ruangan gelap tersebut. Namun LDR tersebut hanya akan bisa mencapai harga di kegelapan setelah mengalami selang waktu tertentu. Laju recovery merupakan suatu ukuaran praktis dan suatu kenaikan nilai resistansi dalam waktu tertentu. Harga ini ditulis dalam K /detik, untuk LDR type arus harganya lebih besar dari 200 K /detik (selama 20 menit pertama mulai dari level cahaya 100 lux), kecepatan tersebut akan lebih tinggi pada arah sebaliknya, yaitu pindah dari tempat gelap ke tempat terang yang memerlukan waktu kurang dari 10 ms untuk mencapai resistansi yang sesuai dengan level cahaya 400 lux.

2. Respon Spektral
LDR tidak mempunyai sensitivitas yang sama untuk setiap panjang gelombang cahaya yang jatuh padanya (yaitu warna). Bahan yang biasa digunakan sebagai penghantar arus listrik yaitu tembaga, alumunium, baja, emas, dan perak. Dari kelima bahan tersebut tembaga merupakan penghantar yang paling banyak digunakan karena mempunyai daya hantar yang baik (TEDC, 1998).

Optocoupler

optocoupler images

Sebuah optocoupler (juga disebut optoisolator) menggabungkan LED dan fotodioda dalam satu kemasan. Pada optocoupler terdapat LED pada sisi input dan fotodioda pada sisi outputnya. Sumber tegangan sebelah kiri dan resistor seri mengatur arus melalui LED. Kemudian cahaya dari LED mengenai fotodioda, dan akan mengatur arus balik pada rangkaian output. Arus balik ini menghasilkan tegangan jepit pada resistor output. Tegangan output kemudian sama dengan output tegangan penyedia daya dikurangi tegangan pada resistor. Saat tegangan input berubah, jumlah cahaya juga berubah-ubah. Ini berarti bahwa tegangan output berubah bersama-sama dengan tegangan input. Hal inilah yang menyebabkan kombinasi LED dan fotodioda disebut dengan optocoupler. Komponen ini dapat menghubungkan isyarat input dengan rangkaian output.

Keuntungan pokok optocoupler adalah terjadinya isolasi elektrik antara rangkaian input dan output. Dengan optocoupler, hanya terdapat kontak input dan output dalam bentuk pancaran sinar. Oleh karena itu, dimungkinkan untuk mengisolasi resistansi antara dua rangkaian dalam orde ribuan megaohm. Isolasi yang seperti itu berguna dalam aplikasi tegangan tinggi dimana beda potensial dua rangkaian sampai dengan ribuan volt.

Optocoupler adalah alat yang dipakai untuk mengkopel cahaya dari sumber ke detektor tanpa hubungan kelistrikan. Optocoupler dibentuk oleh sumber cahaya yaitu LED dan detektor foto yang berupa transistor foto. Sinyal listrik (arus) pada input menjadi sinyal optik dengan menggunakan sumber cahaya yaitu LED dan sinyal optik tersebut dapat diterima detektor untuk diubah menjadi sinyal listrik kembali.

Gambar di atas adalah optocoupler tipe transistor foto. Tipe ini terdiri dari satu LED dan satu transistor foto. Jika antara transistor dan LED dihalangi maka transistor akan off sehingga output dari kolektor akan berlogika high. Sebaliknya jika antara transistor dan LED tidak dihalangi maka transistor akan on sehingga output-nya akan berlogika low.

Sensor Ultrasonik

ultrasonic_ranger

Gelombang ultrasonik merupakan gelombang akustik yang memiliki frekuensi mulai 20 kHz hingga sekitar 20 MHz. Frekuensi kerja yang digunakan dalam gelombang ultrasonik bervariasi tergantung pada medium yang dilalui, mulai dari kerapatan rendah pada fasa gas, cair hingga padat. Jika gelombang ultrasonik berjalan melaui sebuah medium, Secara matematis besarnya jarak dapat dihitung sebagai berikut:

s = v.t/2

dimana s adalah jarak dalam satuan meter, v adalah kecepatan suara yaitu 344 m/detik dan t adalah waktu tempuh dalam satuan detik. Ketika gelombang ultrasonik menumbuk suatu penghalang maka sebagian gelombang tersebut akan dipantulkan sebagian diserap dan sebagian yang lain akan diteruskan. Proses ini ditunjukkan pada gambar berikut :

Sensor ultrasonik adalah sebuah sensor yang mengubah besaran fisis (bunyi) menjadi besaran listrik. Pada sensor ini gelombang ultrasonik dibangkitkan melalui sebuah benda yang disebut piezoelektrik. Piezoelektrik ini akan menghasilkan gelombang ultrasonik dengan frekuensi 40 kHz ketika sebuah osilator diterapkan pada benda tersebut. Sensor ultrasonik secara umum digunakan untuk suatu pengungkapan tak sentuh yang beragam seperti aplikasi pengukuran jarak. Alat ini secara umum memancarakan gelombang suara ultrasonik menuju suatu target yang memantulkan balik gelombang kearah sensor. Kemudian sistem mengukur waktu yang diperlukan untuk pemancaran gelombang sampai kembali kesensor dan menghitung jarak target dengan menggunakan kecepatan suara dalam medium. Rangkaian penyusun sensor ultrasonik ini terdiri dari transmitter, reiceiver, dan komparator. Selain itu, gelombang ultrasonik dibangkitkan oleh sebuah kristal tipis bersifat piezoelektrik. Bagian-bagian dari sensor ultrasonik adalah sebagai berikut:

1.Piezoelektrik
Peralatan piezoelektrik secara langsung mengubah energi listrik menjadi energi mekanik. Tegangan input yang digunakan menyebabkan bagian keramik meregang dan memancarkan gelombang ultrasonik. Tipe operasi transmisi elemen piezoelektrik sekitar frekuensi 32 kHz. Efisiensi lebih baik, jika frekuensi osilator diatur pada frekuensi resonansi piezoelektrik dengan sensitifitas dan efisiensi paling baik. Jika rangkaian pengukur beroperasi pada mode pulsa elemen piezoelektrik yang sama dapat digunakan sebagai transmitter dan reiceiver. Frekuensi yang ditimbulkan tergantung pada osilatornya yang disesuiakan frekuensi kerja dari masing-masing transduser. Karena kelebihannya inilah maka tranduser piezoelektrik lebih sesuai digunakan untuk sensor ultrasonik.

2.Transmitter
Transmitter adalah sebuah alat yang berfungsi sebagai pemancar gelombang ultrasonik dengan frekuensi sebesar 40 kHz yang dibangkitkan dari sebuah osilator. Untuk menghasilkan frekuensi 40 KHz, harus di buat sebuah rangkaian osilator dan keluaran dari osilator dilanjutkan menuju penguat sinyal. Besarnya frekuensi ditentukan oleh komponen kalang RLC / kristal tergantung dari disain osilator yang digunakan. Penguat sinyal akan memberikan sebuah sinyal listrik yang diumpankan ke piezoelektrik dan terjadi reaksi mekanik sehingga bergetar dan memancarkan gelombang yang sesuai dengan besar frekuensi pada osilator.

3.Receiver
Receiver terdiri dari transduser ultrasonik menggunakan bahan piezoelektrik, yang berfungsi sebagai penerima gelombang pantulan yang berasal dari transmitter yang dikenakan pada permukaan suatu benda atau gelombang langsung LOS (Line of Sight) dari transmitter. Oleh karena bahan piezoelektrik memiliki reaksi yang reversible, elemen keramik akan membangkitkan tegangan listrik pada saat gelombang datang dengan frekuensi yang resonan dan akan menggetarkan bahan piezoelektrik tersebut.

Karakteristik Sensor Suhu LM35

LM35

Sensor suhu LM35 berfungsi untuk mengkonversi besaran panas yang ditangkap menjadi besaran tegangan. Jenis sensor suhu yang digunakan dalam sistem ini adalahIC LM35, sensor ini memiliki presisi tinggi. Sensor ini sangat sederhana dengan hanya memiliki buah 3 kaki. Kaki pertama IC LM35 dihubung kesumber daya, kaki kedua sebagai output dan kaki ketiga dihubung ke ground. Adapun gambar dan karakteristik dari IC LM35 adalah sebagai berikut :

1. Dapat dikalibrasi langsung ke dalam besaran Celcius.
2. Faktor skala linier + 10mV/ °C.
3. Tingkat akurasi 0,5°C. saat suhu kamar (25°C).
4. Jangkauan suhu antara -55°C sampai 150°C.
5. Bekerja pada tegangan 4 volt hingga 30 volt.
6. Arus kerja kurang dari 60µA.
7. Impedansi keluaran rendah 0,1Ω untuk beban 1 mA.
Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1°C, dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian control yang sangat mudah

 
Robotron-UNM © 2016 | Editor by Asis Robotron | Blogger Template by Blog Zone